CATION-CHLORIDE CO-TRANSPORTER 1 (CCC1) mediates plant resistance against Pseudomonas syringae

B. Han, Y. Jiang, G. Cui, J. Mi, R. Roelfsema, G. Mouille, J. Sechet, S. Al-Babili, M. Aranda, H. Hirt
Plant Physiology, (2019)

CATION-CHLORIDE CO-TRANSPORTER 1 (CCC1) mediates plant resistance against Pseudomonas syringae

Keywords

Pseudomonas syringae, Plant resistance

Abstract

​Plasma membrane (PM) depolarization functions as an initial step in plant defense signaling pathways. However, only a few ion channels/transporters have been characterized in the context of plant immunity. Here, we show that the Arabidopsis (Arabidopsis thaliana) Na+:K+:2Cl- (NKCC) cotransporter CCC1 has a dual function in plant immunity. CCC1 functions independently of PM depolarization and negatively regulates pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). However, CCC1 positively regulates plant basal and effector-triggered resistance to Pseudomonas syringae pv. tomato (Pst) DC3000. In line with the compromised immunity to Pst DC3000, ccc1 mutants show reduced expression of genes encoding enzymes involved in the biosynthesis of antimicrobial peptides, camalexin, and 4-OH-ICN, as well as Pathogenesis-Related (PR) proteins. Moreover, genes involved in cell wall and cuticle biosynthesis are constitutively downregulated in ccc1 mutants, and the cell walls of these mutants exhibit major changes in monosaccharide composition. The role of CCC1 ion transporter activity in the regulation of plant immunity is corroborated by experiments using the specific NKCC inhibitor bumetanide. These results reveal a function for ion transporters in immunity-related cell wall fortification and antimicrobial biosynthesis.

Code

DOI: 10.1104/pp.19.01279

Sources

Website PDF

See all publications 2019